Aktuelles
Projektbeschreibung
Team
Ereignisse
Publikationen
Impressum
Publikationen
Typ
Konferenzpapier
Journalartikel
Thesis
Datum
2023
2022
2021
Image-based methods for real-time water level estimation
Xabier Blanch
,
Anette Eltner
,
Ralf Hedel
,
Jens Grundmann
PDF
Zitieren
DOI
Application of optical Particle Tracking Velocimetry (PTV) to determine continuous discharge time series
André Kutscher
,
Jens Grundmann
,
Anette Eltner
,
Xabier Blanch
,
Ralf Hedel
PDF
Zitieren
DOI
Flood Forecasting with Deep Learning LSTM Networks: Local vs. Regional Network Training Based on Hourly Data
Tanja Morgenstern
,
Jens Grundmann
,
Niels Schütze
PDF
Zitieren
DOI
Improving flood forecasting for small catchments using outlier and anomaly detection combined with deep learning networks
Betreuer: Tanja Morgenstern, Niels Schütze
Mugabo Gitare und Clarisse Umugwaneza (Gruppenarbeit)
Zitieren
Flood forecasting for small catchments in Saxony (Germany) using Long Short-Term Memory Networks
Betreuer: Tanja Morgenstern, Niels Schütze
Sagar Dhital
Zitieren
Evaluation of physics-based deep learning model MC-LSTM for short-term forecasting
Betreuer: Nicola Balbarini, Laura Frølich, Niels Schütze
Aslan Burak
Zitieren
Determination of continuous discharge time series based on the optical Particle Tracking Velocity (PTV)
André Kutscher
,
Jens Grundmann
,
Anette Eltner
,
Xabier Blanch
,
Ralf Hedel
PDF
Zitieren
DOI
Towards automatic real-time water level estimation using surveillance cameras
Xabier Blanch
,
Anette Eltner
,
Ralf Hedel
,
Jens Grundmann
PDF
Zitieren
DOI
Flood Forecasting With LSTM Networks: Enhancing the Input Data With Statistical Precipitation Information
Tanja Morgenstern
,
Jens Grundmann
,
Niels Schütze
PDF
Zitieren
DOI
Wasserstandsmessungen mit Deep Learning
Image-based gauging stations can allow for significant densification of monitoring networks of river water stages. However, thus far, …
Anette Eltner
PDF
Zitieren
DOI
Hochwasservorhersage mit LSTM
Tanja Morgenstern
,
Niels Schütze
PDF
Zitieren
DOI
Zitieren
×